## High Temperature Alloys

Pushing the Limits

### Heat Resistant Alloys

- Brief Review of Wrought & Cast Heat Resistant Alloys
- Alloy Developments
  - 2<sup>nd</sup> & 3<sup>rd</sup> Stage Developments
- Most Recent Alloy Developments
- Hurdles for Greater Utilization

### Heat Resistant Alloys

- Alloys used for temperatures above 1000°F
- Major Alloying Elements
  - Iron
    - Typically 8-75%
  - Chromium
    - Typically 15-25%
  - Nickel
    - Typically 8-80%

## In the Beginning

1<sup>st</sup> Generation (Pre-1960)

- Wrought
  - 309 Stainless Steel
  - 310 Stainless Steel
  - RA330 Alloy
  - Inconel® 600 alloy

- Cast
  - HK-40
  - HT or HU
  - HX

## We Need Stronger Materials

Resistance to Creep Resistance to Distortion

### Second Generation (1960-1980)

- Wrought
  - Inconel 601
    - Higher Cr w/ Aluminum for Oxidation
  - Incoloy 800H & HT
    - Al + Ti, Coarse Grains for Strength
  - Hastelloy X
    - Mo, Co, W additions for Strength
  - RA333
    - Co, W, Mo, additions for Strength
    - High Cr, Silicon for Oxidation

- Castings
  - HP Modified (W)
    - Supertherm
    - Thermalloy 63W
    - Thermax 63WC
    - MO-RE 1
  - 22H
  - Super 22H

### **Increased Efficiency**

Latest Generation (1980 – Today)

- Increased Oxidation Resistance
  - Improved Operating Efficiency
    - Operating Temperatures Increase
  - Thinner Sections
    - Need to Reduce Metal Loss
- Further Strength Increases Needed

### Latest Generation

- Microalloying
  - Small Alloying Additions <0.2%</li>
  - Rare Earth Elements
    - Lanthanum
    - Cerium
    - Yttrium
  - Nitrogen
  - Boron

- Mechanical Alloying
  - Oxide DispersionStrengthened (ODS)
  - Produced from powder metal

### Latest Generation

- Micro Alloying
  - RA 253 MA (Ce)
  - RA 353 MA (Ce)
  - Haynes 214 (Y)
    - Also High Al Content
  - RA 602 CA (Y)
    - Also High Al Content
  - Haynes 230 (La)
    - Also W, B
  - HR-120
    - B, N Strengthened

- Mechanical Alloying
  - Nickel Base
    - MA754
    - MA758
  - Iron Based
    - MA956
    - Kanthal APM
    - PM 2000

### **Temperature Limitations**



310SS at 2100F

- All alloys have their limits.
- Limiting Factors
  - Oxidation
    - Not melting point, Yet?
  - Strength
  - Embrittlement

### Common Failure Modes

- Wastage
  - Oxidation
  - Metal Dusting (Catastrophic Carburization)
  - Sulfidation
  - Halogens/Molten Salt Attack

- Moderate to Low Strength
  - Creep Deformation
  - Distortion
- Brittle Fracture
  - Secondary Phases
  - Carburization
  - Grain Growth

## Temperature Limits (°F), Air

Ni-Cr-Fe Alloys



### **Extending Oxidation Limits**

- Oxidation Limits
  - Minor Alloying Elements
    - Aluminum
    - Silicon
  - Micro Alloying Elements
    - Rare Earths
      - Yttrium, Cerium, Lanthanum

### Alloying with Aluminum

- Wrought
  - Alloy 601 (1.4%)
  - RA 602 CA (2.2%)
    - Micro Alloyed with 0.1% Yttrium
  - Haynes 214 (4.5%)
    - Micro Alloyed with 0.005% Yttrium
- Castings
  - Nickel Aluminides
    - 8-12% Aluminum

- Iron Based -ODS
  - MA956 (4.5%)
    - Mechanically Alloyed with 0.5% Y<sub>2</sub>O<sub>3</sub>
  - Kanthal APM (5.8%)
  - PM 2000 (5.5%)
    - Mechanically Alloyed with 0.5% Y<sub>2</sub>O<sub>3</sub>

## Scaling Resistance Cycled between Ambient and 2200°F weekly.



### 2200°F Testing



## Suggested Temperature Limits



### Hurdles to Widespread Adoption

- Higher Aluminum Content Nickel Alloys
  - More prone to hot cracking during welding
    - MIG/TIG may require special shield gases
    - Tighter control on heat input
- Potential for Strain Age Cracking
  - 600°C range

## Strengthening

- Carbon
  - RA 602 CA
- Nitrogen
  - RA 353 MA
- Boron
  - HR-120
- Cobalt
  - HR-160
- Molybdenum
  - Hastelloy X

- Aluminum + Titanium
  - Incoloy 800HT
- Tungsten
  - Haynes 230
- Coarse Grains
  - Casting Alloys
  - H Grades
- Mechanical Alloying
  - Yttria

## Effect of Carbon On Strength



### Strength – 10,000 Hours Rupture, psi

| Alloy     | Strength               | 1600F | 1800F | 1900F | 2000F |
|-----------|------------------------|-------|-------|-------|-------|
| RA330     |                        | 1700  | 630   | 400   | 280   |
| 800HT     | CG<br>Al + Ti          | 3500  | 1200  |       |       |
| RA 353 MA | Nitrogen               | 2600  | 1300  | 930   | 680   |
| HR-120    | N, B, Co,<br>Mo, W, Cb | 5600  | 1900  | 800   |       |
| HT (Cast) | CG, High C             | 3700  | 1700  |       |       |

**All Alloys 32-37% Nickel Nominally** 

### Average 1000 hour Rupture, psi

| trength 1600F | 1800F | 2000F     |
|---------------|-------|-----------|
| 4300          | 2100  | 1000      |
| ODS 22900     | 18700 | 13600     |
|               | 4300  | 4300 2100 |

<sup>\*</sup>Longitudinal

# Ductility

|           |                           |            | High Temperature Phases |       |               |          |
|-----------|---------------------------|------------|-------------------------|-------|---------------|----------|
| Alloy     | Strength                  | Elongation | 885F                    | Sigma | Strain<br>Age | Nitrides |
| RA330     |                           | 48%        | No                      | No    | No            | No       |
| 800HT     | CG<br>Al + Ti             | 48%        | No                      | No    | Yes           | No       |
| RA 353 MA | Nitrogen                  | 48%        | No                      | Yes   | No            | Yes      |
| HR-120    | N, B, Co,<br>Mo, W,<br>Cb | 48%        | No                      | Yes   | Yes           | Yes      |
| Cast HT   | CG, High<br>C             | 10%        | No                      | No    | No            | No       |
| 446 SS    |                           | 33%        | Yes                     | Yes   | No            | No       |
| MA956     | Mech<br>Alloy, CG         | 10%        | Yes                     | Yes   | ?             | ?        |

### Hurdles to Widespread Adoption

- Lower Ductility
  - Carbon
  - Boron
  - Nitrogen
  - Coarse Grains
- Cobalt
  - Cost of Raw Material
- ODS
  - Cost of Production
  - Welding

- Reduced Stability
  - Al, Ti, & Cb
    - Strain Aging
  - N, C, B
    - Precipitates
  - Molybdenum
    - Increased Tendency for Sigma

### Needs

- Corvette Performance Chevette Price
  - Price is always foremost consideration
    - Improved Production Methods
    - Leaner Alloying
- Predictability in Service
  - Trailblazers
    - Data, Data, More Data
    - Detailed In Service Performance Data
    - Long Term Ductility

#### Needs

- Ease of Fabrication
  - Low Ductility
  - Weldability
  - Requirement for Heat Treatment
- Availability
  - Production Needs to Be Reliable
  - Material Available When Opportunities Arise